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STABILIZATION OF THE MOTION OF A DYNAMIC SYSTEM 

UNDER CONDITIONS OF UNCERTAINTY" 

D.V. LEBEDEV 

The problem of the stabilization of the unperturbed motion of a dynamic 
system when there is incomplete information about the system parameters 
is considered. The solution is sought by Lyapunov's second method in 
the class of dynamic controllers and generalizes the result obtained in 
/l/ to controlled dynamic systems. Similar control problems were 
considered, in particular, in /2/. 

The solution is used to stabilize the permanent rotation of a rigid 
body by a controlling moment with zero x-component /3/. 

1. Statement of the problem. Consider a controlled dynamic system (a controlled plant) 

x' m: 4 (x, u. g), f ((I. II, 5) ~: 0 (4.1) 
x F= R,, . u 6 U i R ,,, , $ -5 Ii, 

where g is the s-dimensional vector of unknown parameters. 
In the domain 

P ~~ {x. 5: 11 K II< YI. /I Sll < \.L) (I.") 

(v, and vz are positive constants), the functions ft (Y. u. g) (I 1. ., IL) are continuous 
together with their partial derivatives with respect to s,, ., ., .I,,, El. ..,, F_, and there exists 
a constant 2‘;% > 0 such that 

1 8-f,,/f3~j& 1 < va (i = I. . n; j. k : 1. ., s) 

It is required to a find a control u which ensures asymptotic stability in the domain 
(1.2) of the equilibrium 

x ~(1 (l.:o 

of system (1.1). 

2. Stabilization of a controlled system with unknom parameters. Assume that the stabil- 
ization problem with unknown vector E; is solved by the control 

" 2 u* (x, 5), u* (0.E) z 0 (2.1) 

which corresponds in the domain (1.2) to a positive-definite function W satisfying the equation 

(av,'ax).f (r. u*. E) -W(X. 3); 

the function V,(x) is positive-definite in this domain. 
We will also assume that system (1.1) is identifiable on the unperturbed trajectory (1.3) 

/4/. 
The solution of this problem with unkown vector g is sought in the class of dynamic 

controllers /2/: 
y' = Q(x. Y, ". 11). 9' =- g(l. I-. 'I), II := "(X. n) (2.") 

where n is the s-dimensional estimate vector of the plant parameters $, and g (x. J, n) is 
the required vector function. 

Specifying the right-hand side of the first equation in (2.2) in the form /l/ 

@ (X, Y? u,n) = A (Y -X) -I f (X, u, 11) 
(A is a stable n .( n matrix), we note that the difference e s -Y between the plant state 
vector x and the state vector of the parameter tracking system y satisfies the equation 

e'=de- u(X,",6)-f(X,",~)=Aet 'f ag (x.u.n)cI m'm h(x,u.n,a)* a _ 5-n (".:i) 

Ilh(x,“.q,a)(( Ilall-~~(’ for Ilak,(’ 
Here we have used the previously listed properties of the vector function f (x. “. F). 

which make it possible to write the difference of the last two terms on the right-hand side 
of Eq.(2.3) in the above form /l/. 

Forming the control (2.1) from the estimate 14 of the vector g, we assume that the control 
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can be represented in the form 

u(x,?)=U*(x,E)i-Q(~)aI-q(x,a,~) (2.4) 

where Q(g) is an m X s matrix and q(x, a,%) is a vector function whose expansion in the 
variables x and a starts with terms not lower than the second order. 

Now consider the plant Eq.(l.l), system (2.31, the equation for the error ct of the 
estimated parameters 

a' = --R (x, e, 11) (2.5) 

and the control algorithm (2.41. The problem reduces to finding a vector function g(x. e. 11) 
which ensures asymptotic stability of the equlibrium 

x=O,e=O,a=O (2.6) 

of system (l-l), (2.31-(2.5). 
We will introduce the function 

1; (x, e, a) = V,(x) + e’Re -i a’I?a (2.7) 

(R and I7 are symmetric n X n and sxs matrices, respectively) which is positive every- 
where except at the point (2.6), where it vanishes. The derivative of V with respect to time, 
by virtue of the unperturbed system (1.11, (2.3)-(2.5) can be represented in the form 

V = --W (x, 5) + 2x’Da + e’Ne + 

2e'K (%/aF)a - 2a'r-'g + v (x, e, a) 

N=A’H+RA 

where, as a result of the stability of the matrix A the symmetric matrix N<O; the 
of the function u (x, e, a) in the variables x, e, a starts with terms of not lower 
third degree and v(O,O,a) = 0. Note that the term 2x’Da in (2.8) is attributable 

term Q (g)a in the structure of the control u. 

(2.8) 

expansion 
than the 
to the 

Sign-definiteness of analytical functions is determined by the terms of lowest order in 
their expansion /5/. We can therefore judge the properties of the function (2.8) from the 
properties of the functions 

P (x, e. a) = -W(x, g) + e'Ne + 

2e' [Dx + (~~/~~)‘Re - f-‘g\ 

(7.9) 

If we put 

g (x, e, n) == I' (a@YE)‘Re + I’Dx (2.10) 

then the right-hand side of (2.9) as a function of the vector s = {x', e'. a'} is negative 
definite, because it is zero not only at the point (2.6) but also on the set 

2 = (2: x = 0. e = 0, a # 0) 

The set 2 does not contain entire trajectories of the system (1.1): (2.3)-(2.51, and 
therefore by Krasovskii's theorem 16/ the control u = u(x. n) and the identification law 
(2.10) ensure asymptotic stability of the unperturbed motion (2.6) of system (l.l), (2.3)- 
(2.5). 

'Note in conclusion that the system of equations (the dynamic controller) 

y. = A (y - x) -t. i (x, u (x, I$, n). n' := r (~f~~~)'~ (r - y) $ 
Wx, " = " (*. n) 

not only solves the stabilization problem but also determines the vector i of unknownplant 
parameters. 

3. StobiZimtion of the permmren t rotation of (z ri@d body. 
handed orthogonal systems of coordinates: 

We will introduce two right- 
the coordinate system XycyZ rigidly attached to the 

body and the system Z*Y*Z* of principal central axes of inertia of the body. 
We will assume that the motion of the rigid body is observed in the basis wz and is de- 

scribed by Euler's dynamic equations 

Ju' -+ 0 x Jo = MI, w = {WI, (?I!,, w,} (3. 1) 

The controlling moment M has the structure M : {I’. Ill,, hfZ}. 
The matrix of inertia J is related to the matrix of inertia J, = diag {Jlr Jp,J3) (to fix 

our ideas, let J,<J, < J3) in the basis "*Y*% by the equality 

J = BJ,B’, B = {fiij} (i, j = f. 2, 3) (3.2) 
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(3 is the matrix of direction cosines). 
Assume that the angular velocity W, ~~ St ( 1 wy j. j (0: i hi.. Sk) is imparted to the rigid body 

with known moments of inertia in the system J*Y*%. It is required to stabilize the per- 
manent rotation of the body about the I* axis with the angular velocity 12, for an unkown 
attitude of the principal central axis of inertia .i‘* of the rigid body in the xcyz system. 
In the zy.s basis, this corresponds to the motion 

0 w,: n*t. F, (fi,,. pt{. IL,) (::.::) 

We will now introduce new variables Xi by the formula 

W x -+ Q,& x -= (Xi) (i -. 1. 4. 

and write the equation of perturbed motion of the rigid body 

JX' -+ !!*$ JX -]- x :< J (X ! n*gJ 

Parametrize the matrix B of direction cosines using the 

T, P-t,, 71 P.11~ T lit:, 

and represent it in the form 

) y1 T2Ts -- TI*t:$ 
/s = I, T1 

!I :.2 

3) (2. <) 

in the form 

= M 

variables 

Note that along the unperturbed trajectory (3.31 the parameters T% and To are identifi- 
able, while the paraaeter TV is unidentifiable. Because of the unidentifiabil~ty of T.~, we 
may take an arbitrary value (e.g., zero) for this parameter. 

Since the direction of the .z* axis in the X$/Z basis is determined by the parameters T, 
and Ta, we need to identify the vector E (or more precisely two components pl, and fig, of 
this vector). 

As the tracking model for the parameter vector g of the rigid body, we use the system 
of equations 

y' : 11 (y - 0) j J+-’ (11 - 0 x J+o) (2.G) 

where J_ is the matrix of inertia of the body, calculated using the estimate T] of the vector 

To construct the identification algorithm (2.10), we calculate the matrix %fidg G /] Odf/r~r //, 

T {T,. T*) (0 is the :j, ‘. I matrix of zeros) from the formula 

where using (3.2) 

In /3/ the permanent rotation of a rigid body (3.3) with known vector g is stabilized 
by the control 

(S.7) 

or in coordinate form 

:lI, i; (WY - [iz* (:‘a))* ill: if (Q? - fix (E’dl 

To solve the problem with unkown vector j, we construct the controlling moment k1 in the 
form (3.7), replacing the vector 5 in the matrix & with its estimate n = 6 -a, The control 
obtained in this way is written in the form 

M kQ (n) o ~: kQ(t) (X -i g&a) +- nr (X. a) (::.s) 

where m(X> a) is a vector function whose expansion in powers of the variables X and a starts 
with terms of not less than second degree. 



Let us now determine the structure of the identification law. Let 

X: Bx, e = Be,, a = Ba,, m = Bm, 

a,: {a!*), m, -= (mi*) (i = 1, 2, 3) 

The system (l.l), (2.3)-(2.5), with the first equation in the form (3.5), is written in 

the G+YG, basis, taking into account the control (3.8): 

JG,' (J, - J:)z,z, - li rp,,fl,z (z* -I- Q*a,*) T (3.9) 

P,,Pls (G I- %a,*)1 I- m,* b, a,) 

J*x*’ = (.I;] - J1) (q j- (2,) .z3 f k I(1 - pl;‘) (.cp T 

S!*a2*) - P,& (.r, + Q*a,*)l + mz* (x, a,) 

J,s’ = VI - JA (21 + Q,) 12 + k [-IMu (22 + 
%a,*) + (1 - iL2) (x3 + Q,a,*)l C m,* (x7 a,) 

e, ’ = A,e, + B’ (df.‘d:)Ba, + h,, a,' = g, (x, e,, a*) 

A, = B’AB, g, = {gt*} = --B’g (i = 1, 2, 3) 

(3.10) 

The new variables I', and Y,. related to the variables x2, x3. a?*. a,* by the equalities 

Y, = Z? + P*a,*, I', = zg + B*a,* 

enable the system of Eqs.(3.9) to be reduced to the form 

J,s,' = (Jz - J3) (Y, - Q*a**) (Y, - a,cQ*) - 

kPIAzY, - W,,B,,Y, + m,* 

(3.11) 

J,Y,’ = (J:, - J,) (z, + Q,) (Y? - P*a,*) + 

k (1 - I%221 Y, - kB,,P,~Y, + J,%g,* + m2* 

JIY,’ = (J, - JJ (x, + Q,) (Y, - Q*a,*) - 

k8,&Y, f k (1 - PI37 Y, + J,Q2,e3* + m,* 

The required vector function g* is determined using a Lyapunov function of the form 

2V = J,Y,’ + J,Y,* + pe,‘e, I- +c,‘a,, p > 0, y > 0 (3.12) 

The total derivative of V with respect to time, by virtue of Eqs.(3.10) and (3.11), is 
given by 

V’ = k (1 - p,z') Y,' + IC (1 - &a') 17zz + [(J, - JJ (2, + %A - 

W&&l Y,YI + J,Q,Y,gz* + J&Y&* + 

pe,‘A,e, + a,’ [pR’ (17’3~)’ Be, -I- 

pg, - ‘y‘ (I’,. Y*)l + v (Y,. Y,, a,) 

w (Yl, 1’2) = (0, (J, - J*) (q + Q*);2*Y,. (J, - J,) (2, + Q,) Q*I’,) 

(3.13) 

b WI7 y*, a*) is a vector function whose expansion in powers of the arguments starts with 
terms of not less than the third degree). 

Specifying the vector function g* by the relationship 

g* = - p@’ ($7 Be, + yy VI. Y2) (3.14) 

we replace (3.13) with the expression 

V = W(Y,, Y,, e,) + u (Y,+ Y,, a,) 

where W is a quadratic form in the variables I',, Y, and e,. 
If we choose the weights in (3.12) so that W(Y,, 

of its arguments, 
Y,, e*) is a negative-define function 

then by the results of Sect.2 the control 

IV, = k (coy - qz (q’o)), 241, = k (0: - q:r (q’o)) (3.15) 

and the identification algorithm (3.14) ensure asymptotic stability of system (3.10), (3.11) 
with respect to the variables Y,. Y,, e,, a,. The right-hand side of the first equation in 
system (3.11) tends to zero as t+ CC and therefore zl-+c = const. The permanent rotation 
(3.3) of the rigid body is thus Lyapunov stable. 
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We now have to rewri .te the identification algorithm (3.14) in the original ccyz basis. 
Assuming, for simplicity, that J, : t13 = J, and making the necessary transformations, we 
rewrite the equation of the identification process in the form 

The second term in Eq.(3.16) is approximed by the relation 

F = y(fo-- f,)Q,$w (Xii) 

The resulting error is expanded in a series in powers of a and X starting with quadratric 
terms. 

When the deviation of the x axis from Z+ is small, the expression for F is simplified: 

4. Ezampte. For a rigid body with the paraneters of the ellipsoid of inertia 

J, O.l,lO1'. J1-- J 1 1~ (kgxrn') 

!n is an arbitrary integer) and the unit vector 5 (0.~~48. --o,of2338. 0.1~12338) of the principal 
axis of inertia r*, Fig.1 shows the variation of the angular velocities o,, wI,. wT during the 
stabilization of its permanent rotation (3.31 (<I 1 *ec -1) by the control algorithm (3.15) 
with the identification law (3.16)-(3.171. 

u 
ec 

Fig.1 Fig.2 

Fig.2 illustrates the dynamics of the process of identifying the vector E. Initially, 
nothing is known about the vector 4. {Q,} (i == f,2,3) and it is defined in the form n!O) (1.0.Of. 

The simulation was carried out for the following parameter values in 13.151-13.17): km 
-0.3x 107' Nmsec, p 25x10n kgm’ , and :'-I 5x10~ kgm’ se+. 
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